Molecular and Thermodynamic Determinants of Self-Assembly and Hetero-Oligomerization in the Enterobacterial Thermo-Osmo-Regulatory Protein H-NS
Date25th Oct 2023
Time03:30 PM
Venue BT Seminar Hall
PAST EVENT
Details
Environmentally regulated gene expression is critical for bacterial survival under stress conditions, including extremes in temperature, osmolarity and nutrient availability. Here, we dissect the thermo- and osmo-responsory behavior of the transcriptional repressor H-NS, an archetypal nucleoid-condensing sensory protein, ubiquitous in enterobacteria that infect the mammalian gut. Through experiments and thermodynamic modeling, we show that H-NS exhibits osmolarity, temperature and concentration dependent self-association, with a highly polydisperse native ensemble dominated by monomers, dimers, tetramers and octamers. The relative population of these oligomeric states is determined by an interplay between dimerization and higher-order oligomerization, which in turn drives a competition between weak homo- versus hetero-oligomerization of protein-protein and protein-DNA complexes. A phosphomimetic mutation, Y61E, fully eliminates higher-order self-assembly and preserves only dimerization while weakening DNA binding, highlighting that oligomerization is a prerequisite for strong DNA binding. We further demonstrate the presence of long-distance thermodynamic connectivity between dimerization and oligomerization sites on H-NS which influences the binding of the co-repressor Cnu, and switches the DNA binding mode of the hetero-oligomeric H-NS:Cnu complex. Our work thus uncovers important organizational principles in H-NS including a multi-layered thermodynamic control, and provides a molecular framework broadly applicable to other thermo-osmo sensory proteins that employ similar mechanisms to regulate gene expression.
Speakers
Bincy Lukose (BT18D003)
Department of Biotechnology