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Abstract

Automatic detection of phoneme boundaries is an important
sub-task in building speech processing applications, especially
text-to-speech synthesis (TTS) systems. The main drawback of
the Gaussian mixture model - hidden Markov model (GMM-
HMM) based forced-alignment is that the phoneme boundaries
are not explicitly modeled. In an earlier work, we had proposed
the use of signal processing cues in tandem with GMM-HMM
based forced alignment for boundary correction for building In-
dian language TTS systems. In this paper, we capitalise on the
ability of robust acoustic modeling techniques such as deep neu-
ral networks (DNN) and convolutional deep neural networks
(CNN) for acoustic modeling. The GMM-HMM based forced
alignment is replaced by DNN-HMM/CNN-HMM based forced
alignment. Signal processing cues are used to correct the seg-
ment boundaries obtained using DNN-HMM/CNN-HMM seg-
mentation. TTS systems built using these boundaries show a
relative improvement in synthesis quality.

Index Terms: Deep Neural Networks, Convolutional Neural
Networks, phonetic segmentation, signal processing cues

1. Introduction

Segmentation of speech into accurate time-aligned phonetic
transcriptions plays a vital role in building robust speech sys-
tems, including statistical parametric speech synthesis (SPSS)
systems, as the duration of HMM states is explicitly modeled
and generated during synthesis [1]. The widely used HMM-
based forced alignment is not ideal for speech synthesis [2, 3] as
the location of the phoneme boundary is not used as a criterion
for estimation of parameters, and often requires manual cor-
rection after the forced alignment. Manual labeling for a huge
multi-lingual corpus is time-consuming and error-prone which
warrants automatic procedures that are better than Viterbi force-
aligned HMM segmentation. There have been many attempts at
improving the accuracy of the HMM segmentation. In [4], a
spectral transition measure is used to correct boundaries having
abrupt spectral changes. In [3], the boundaries were iteratively
moved forward or backward by one frame, depending upon the
direction in which frame classification accuracy is increased.

Wherever hand-labeled data is available, for example, the
TIMIT corpus [5], machine learning models have been trained
to learn the boundaries [6]. For example, [7] uses support vec-
tor machine (SVM) and [8] uses a multi-layer perceptron to re-
fine the HMM boundaries. The best-reported results on TIMIT
database use a fusion of multiple acoustic front-ends (i.e. sys-
tems based on MFCCs, PLPs, RASTA-PLPs), on top of bound-
ary correction models such as neural networks and single-state
HMMs, thereby improving the segmentation accuracy to 96.7%
within a tolerance of 20 ms [9]. However such hand-labeled
data is not available for Indian languages.

Accurate phonetic segmentation becomes a problem when
only the phoneme sequences are available and not their bound-
ary locations. For syllable-timed languages, signal processing
cues that are agnostic to the speaker can be used to get syllable
boundaries [10]. Signal processing cues result in false alarms
but seldom introduce deletions when the parameters are cho-
sen such that the boundaries are overestimated. The phonetic
transcription can be used in tandem with signal processing cues
to eliminate insertions in such cases. Signal processing cues
along with HMM-based alignment has been used for segment-
ing speech data in TTS systems for Indian languages, that are
syllable-timed [11].

Conventionally, the posterior probability of how well an
HMM state fits a frame is decided by a GMM [12]. With the re-
cent success of deep neural networks (DNN) and convolutional
deep neural networks (CNN) for automatic speech recognition
(ASR), DNNs and CNNs have outperformed GMMs in acous-
tic modeling as they can handle highly non-linear relationships
between the input and output [6]. Even though neural networks
are widely used in speech recognition, they are not used for
speech segmentation for TTS. This work is an attempt to ex-
ploit the discriminative power of deep networks in the context
of phoneme segmentation.

The rest of the paper is organised as follows. Section 2 ex-
plains the role of signal processing cues in speech segmentation.
The proposed system is described in Section 3. Section 4 dis-
cusses the experimental setup and results obtained. The work is
concluded in Section 5.

2. Acoustic cues for boundary correction

For syllable-timed languages, minimum phase group delay
(GD) based processing of short-term energy (STE) is used for
obtaining syllable boundaries [13]. Although GD based seg-
mentation gives accurate syllable boundaries, it introduces a
number of spurious boundaries for syllables starting or end-
ing with a fricative or nasal, and syllables that start with a
semivowel or affricate. The number of boundaries given by
GD segmentation is decided by an empirical parameter, window
scale factor (WSF) which determines the size of the lifter . An
appropriate value of WSF is chosen such that syllable bound-
aries given by HMMs are only approximated to boundaries of
high confidence [11].

Additionally, spectral flux is used to address the issues of
inaccurate syllable boundaries in the context of fricatives, af-
fricates, nasals and semivowels. A modified version of spectral
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flux called sub-band spectral flux (SBSF) is used as a cue for
boundary correction [14, 15].

The correction of the boundary between two syllables, syl-
lable 1 and syllable 2, is hence performed on the basis of end
phone of syllable 1 and start phone of syllable 2. The follow-
ing correction rules are applied for obtaining accurate syllable
boundaries:

Rule 1: The boundary between syllable 1 and syllable 2 is cor-
rected using STE if syllable 1 does not end with a fricative or
nasal and syllable 2 does not begin with a fricative, affricate,
nasal or semi-vowel.

Rule 2: The boundary between syllable 1 and syllable 2 is cor-
rected using SBSF if either the end phone of syllable 1 or the
start phone of syllable 2 is a fricative or an affricate, but not
both.
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Figure 1: Boundary correction using STE and SBSF.

Figure 1 > shows our earlier efforts on boundary correc-
tion of the GMM-HMM (referred to as GMM-BC) system [14].
The panel HMM shows the initial syllable level alignment us-
ing GMM-HMM flat start. GD processing of STE, and SBSF
are used as signal processing cues to correct the initial sylla-
ble boundaries. The panel Final shows the corrected syllable
boundaries obtained using STE and SBSF. The boundary of the
syllable k-a-r is corrected using STE using Rule 1 and boundary
of the syllable kh-o-j is corrected using SBSF using Rule 2.

3. Proposed system

Neural networks are not used for speech segmentation in the
TTS framework for Indian languages even though they are
widely used in speech recognition. In this work, GMMs in
HMM-GMM framework for phoneme segmentation in TTS
systems are replaced by DNN and CNN for better phoneme
segmentation. Acoustic models are built by training the neu-
ral networks with the GMM-HMM monophone alignment (also
known as HMM-based phone alignment) as the initial align-
ment. The DNN-HMM/CNN-HMM are then trained iteratively
to get accurate final phone boundaries. This is shown in Block
IT of Figure 2. The number of iterations is set to 8 empirically
as the phone boundaries do not change much afterward.
Acoustic cues give robust syllable boundaries for a subset
of syllables as discussed in Section 2. Syllable boundary cor-
rection using signal processing cues (GD of STE, and SBSF)

2This Figure is reproduced from [14] with author’s permission
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Figure 2: Block diagram of proposed system

after GMM-HMM flat start initialisation is shown in Block I of
Figure 2. The boundaries of the last phone of each corrected
syllables are marked as GD corrected phone boundaries. A syl-
lable to phone dictionary (shown as syldict in Figure 2) is used
to map from syllable to phoneme sequence. Most of the phone
boundaries given by neural networks are better than GMM-BC
alignment, which uses signal processing cues along with GMM-
HMM based forced alignment. But they are not able to out-
perform with respect to some of the boundaries obtained using
GMM-BC segmentation.

The proposed framework, where the boundaries obtained
using DNNs/CNNs are further corrected using signal process-
ing cues is shown in Block III of Figure 2. Similar to segmenta-
tion using deep networks, GMM-HMM monophone alignment
is used as the initial phone alignment. These phone alignments
are corrected, either forward or backward, using GD corrected
phone boundaries. The boundary corrected phone alighments
are then used for training neural networks. The alignments ob-
tained after deep network training are again corrected using GD
corrected phone boundaries and this process is repeated 8§ times
iteratively. After the 8" iteration, phone alignment obtained
from deep networks are corrected again using GD corrected
phone boundaries as shown in Figure 2.

4. Experiments and Results
4.1. Datasets Used

The experiments are conducted on five Indian languages. A
subset of Indic database [16] is used for the experiments. The
details of the data sets used are given in Table 1. The utterances



are recorded by a single native speaker of the corresponding
language in a noise-free studio environment at a sampling rate
of 48KHz, 16 bits per sample. For grapheme to phoneme con-
version of the native text, a unified parser for Indian languages
is used [17].

Table 1: Dataset used

Language | Gender Duration | No. of No. of
(in hrs) utterances | phones
Hindi Male 5.00 2192 58
Hindi Female 5.00 2144 58
Bengali Male 5.00 3093 52
Kannada Male 3.43 1289 49
Kannada Female 3.82 1229 48
Malayalam | Male 5.00 3063 52
Telugu Male 4.24 2478 49

4.2. Segmentation

Segmentation of speech data is performed at phone level using
the following methods:

¢ GMM-HMM with boundary correction based on signal
processing cues

* DNN-HMM without any boundary correction
¢ CNN-HMM without any boundary correction

* DNN-HMM with boundary correction based on signal
processing cues

¢ CNN-HMM with boundary correction based on signal
processing cues

In the first approach, conventional GMM-HMM framework
is used for phone level segmentation. 39-dimensional mel
frequency cepstral coefficients (MFCC) features are used
for training HMMs. Vowels, consonants, and pauses are
modeled as 5-state 2-mixture, 3-state 2-mixture, and 1-state
2-mixture models respectively. In the next four methods,
DNN-HMM/CNN-HMM is used for segmentation.  For
training the DNN and CNN, 40-dimensional filter bank features
are used. The number of layers and the number of nodes used
in DNN/CNN are detailed later.

4.2.1. GMM-HMM with boundary correction (BC) based on
signal processing cues (GMM-BC)

The boundaries obtained with HMM-based segmentation may
not be accurate; group delay based processing of STE and SBSF
is used in tandem with HMM-based forced alignment to obtain
better syllable boundaries. The waveforms are then spliced at
the syllable level and embedded re-estimation is performed by
restricting to the syllable boundaries and monophone models
are built. This process is detailed in [14] (chapter 4).

4.2.2. DNN-HMM

The DNN architecture used here has 6 layers. The steps in-
volved in DNN-HMM segmentation is given in Algorithm 1.
The initial alignment is given from GMM-HMM flat start ini-
tialisation, after which RBM pretraining is performed. DNN
is trained using the initial alignment. 90% of the alignment is
used for training and 10% is used for validation. The alignment
obtained from DNN training is fed back iteratively 8 times as
shown in Block II of Figure 2.

Algorithm 1 DNN-HMM segmentation

1. Input Features: 40 dimensional filter bank features are
used as input for DNN. The features are spliced over 11
frames to add context information to DNN.

2. RBM Pretraining (6 layers):

* A layer by layer training of RBM is performed.

* The first layer of RBM is a Gaussian-Bernoulli
layer and is trained with an initial learning rate of
0.01.

* The rest of the layers are Bernoulli-Bernoulli lay-
ers and are trained with an initial learning rate of
0.4.

* The momentum parameter is set to 0.9 and 20
epochs are used for training each layer.

3. DNN Training (6 layers):

e The DNN weights are layer by layer initialized
with the pre-trained RBM weights.

* The DNN is trained using stochastic gradient de-
scent using back propagation.

* A mini-batch size of 256 is used for training.

» After each epoch, the network is tested on the
error-validation data to determine whether to ac-
cept or reject the model. If the model is rejected
the learning rate is halved for the next epoch.

4.2.3. CNN-HMM

The steps involved in training the CNN is given in Algorithm 2.
CNN training is done similar to DNN training as discussed in
Section 4.2.2.

Algorithm 2 CNN-HMM segmentation

1. Input Features: 40 dimensional filter bank features with
3 pitch coefficients are given as input to the network. The
features are spliced over 11 frames to add context infor-
mation into CNN training.

2. Convolutional layer:

* Two convolutional layers are used with 1024 nodes
in each layer.

¢ The convolutional window is of dimension 8.

* A pooling window of size 3 and no overlap of
pooling window is used in pooling layer.

» The CNN layer used a feature map number of 256
and 128 for first and second convolutional layer
respectively.

3. Fully connected layer:

* 4 fully-connected layer with 1024 nodes in each
hidden layer is used.

* The fully connected layer are trained by first per-
forming a pre-training and followed by iterative
training using the features extracted through CNN
layer.




4.2.4. DNN-HMM with boundary correction (DNN-BC)

The initial monophone alignment (GMM-HMM flat start initial-
isation) is modified with GD corrected phone boundaries. This
corrected monophone alignment becomes the initial alignment
for DNN training. DNN training is similar to that in Section
4.2.2 except that, after each iteration, the phone alignment is
corrected as explained in Block III of Figure 2. After the 8" it-
eration, the boundaries are again corrected using GD corrected
boundaries to get the final phone alignment.

4.2.5. CNN-HMM with boundary correction (CNN-BC)

CNN training is performed similarly to Section 4.2.3. Boundary
correction is performed similarly to DNN-HMM with boundary
correction as explained in Section 4.2.4.
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Figure 3: Sample STE and SBSF correction with DNN

Figure 3 shows a part of a Hindi speech utterance, with
syllable boundaries obtained after GD based correction, initial
monophone alignment with HMM flat start initialisation (shown
as mono in figure), with phone boundaries obtained using DNN
segmentation with boundary correction (shown as DNN-BC in
the figure) and without boundary correction (shown as DNN
in the figure). The numbers 1, 2 and 3 corresponds to: 1
for no boundary correction, 2 for STE based correction, and
3 for SBSF based correction. Phone boundaries obtained with
DNN segmentation without boundary correction is shown in
blue colour and that obtained after performing boundary cor-
rection is shown in red colour. It is observed that DNN with
GD based correction, the boundary of vowel aa in the syllable
n-aa is improved in two different contexts. In the first n-aa,
boundary of aa is corrected using STE (Rule 1 of Section 2)
and in the second n-aa it is corrected using SBSF (Rule 2 of
Section 2).

4.3. Text-to-speech systems

HMM-based speech synthesis systems with STRAIGHT (HTS-
STRAIGHT) [18] are built with the segmentation obtained us-
ing various approaches discussed in Section 4.2. The built
systems are evaluated by subjective measures by conducting
two listening tests- degradation mean opinion score (DMOS)
and word error rate (WER). The DMOS and WER tests are
performed by 6-20 participants across the various languages.

For DMOS evaluation, 30 different sentences synthesized using
each of the methods discussed in Section 4.2 is played randomly
along with originally recorded utterances. The participants are
allowed to listen to the speech utterances only once. Partici-
pants are asked to rate all the sentences on a scale of 1-5, where
5 being the best and 1 refers to the worst quality. In the second
test to calculate WER, participants are asked to listen to seman-
tically unpredictable sentences (SUS) and transcribe them. Se-
mantically unpredictable utterances are generated using each of
the 5 methods (Section 4.2). WER is calculated based on the
number of insertions, deletions, and substitutions in the tran-
scription. The result of DMOS and WER tests is shown in Ta-
bles 2 and 3 respectively. Compared to the DNN/CNN systems,
DMOS test shows an average relative improvement of 9.42%
for DNN-BC/CNN-BC systems across the languages. These
systems also show significant improvement of 14.8% over the
GMM-BC system.

Table 2: Degradation mean opinion scores

L g CNN | CNN-BC | DNN | DNN-BC | GMM-BC
Hindi-male 4.03 4.32 4.08 4.55 3.99
Hindi-female 3.35 3.70 3.36 3.51 3.17
Bengali-male 3.26 3.71 3.18 3.60 3.02
Kannada-male 3.64 3.72 342 3.44 3.40
Kannada-female | 3.13 3.51 3.22 3.44 3.19
Malayalam-male | 3.82 4.40 4.02 443 3.44
Telugu-male 3.50 | 4.08 3.67 | 3.92 3.48

Table 3: Word error rates (%)

Languag CNN | CNN-BC | DNN | DNN-BC | GMM-BC
Hindi-male 3.14 | 0.28 442 | 2.00 5.85
Hindi-female 7.50 | 2.50 6.00 1.00 8.75
Bengali-male 6.50 1.81 5.55 1.61 6.40
Kannada-male 4.33 2.00 3.33 2.00 5.66
Kannada-female | 4.76 3.57 3.57 2.38 5.95
Malayalam-male | 3.33 1.66 3.33 0.50 5.66
Telugu-male 8.18 1.59 7.46 2.69 9.90

5. Conclusions

Parametric speech synthesis systems also require accurate seg-
mentation of the training data at phone level for training a
good model. Acoustic modeling using DNNs has shown great
promise in the context of ASR for many languages. Never-
theless, the phone boundaries are still inaccurate for speech
synthesis systems. In this paper, an attempt is made to im-
prove the boundaries obtained in a DNN-HMM/CNN-HMM
system using signal processing cues. TTS systems are built us-
ing the obtained phoneme segments. Results of the listening
test show that the quality is improved after using signal pro-
cessing cues along with deep learning techniques. Sample test
utterances used for the evaluation are available at the https:
//www.iitm.ac.in/donlab/1s2017/seqg.php.
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